Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Korean Med Sci ; 38(16): e127, 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2304027

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) pandemic has contributed to the change in the epidemiology of many infectious diseases. This study aimed to establish the pre-pandemic epidemiology of pediatric invasive bacterial infection (IBI). METHODS: A retrospective multicenter-based surveillance for pediatric IBIs has been maintained from 1996 to 2020 in Korea. IBIs caused by eight bacteria (Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus pyogenes, Listeria monocytogenes, and Salmonella species) in immunocompetent children > 3 months of age were collected at 29 centers. The annual trend in the proportion of IBIs by each pathogen was analyzed. RESULTS: A total of 2,195 episodes were identified during the 25-year period between 1996 and 2020. S. pneumoniae (42.4%), S. aureus (22.1%), and Salmonella species (21.0%) were common in children 3 to 59 months of age. In children ≥ 5 years of age, S. aureus (58.1%), followed by Salmonella species (14.8%) and S. pneumoniae (12.2%) were common. Excluding the year 2020, there was a trend toward a decrease in the relative proportions of S. pneumoniae (rs = -0.430, P = 0.036), H. influenzae (rs = -0.922, P < 0.001), while trend toward an increase in the relative proportion of S. aureus (rs = 0.850, P < 0.001), S. agalactiae (rs = 0.615, P = 0.001), and S. pyogenes (rs = 0.554, P = 0.005). CONCLUSION: In the proportion of IBIs over a 24-year period between 1996 and 2019, we observed a decreasing trend for S. pneumoniae and H. influenzae and an increasing trend for S. aureus, S. agalactiae, and S. pyogenes in children > 3 months of age. These findings can be used as the baseline data to navigate the trend in the epidemiology of pediatric IBI in the post COVID-19 era.


Subject(s)
Bacterial Infections , COVID-19 , Meningitis, Bacterial , Child , Humans , Infant , Meningitis, Bacterial/epidemiology , Meningitis, Bacterial/microbiology , Staphylococcus aureus , Bacterial Infections/microbiology , Bacteria , Streptococcus pneumoniae , Haemophilus influenzae , Republic of Korea
2.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: covidwho-1264469

ABSTRACT

Polymerase chain reaction (PCR) is the standard in nucleic acid amplification technology for infectious disease pathogen detection and has been the primary diagnostic tool employed during the global COVID-19 pandemic. Various PCR technology adaptations, typically using two-oligonucleotide dye-binding methods or three-oligonucleotide hydrolysis probe systems, enable real-time multiplex target detection or single-base specificity for the identification of single-nucleotide polymorphisms (SNPs). A small number of two-oligonucleotide PCR systems facilitating both multiplex detection and SNP identification have been reported; however, these methods often have limitations in terms of target specificity, production of variable or false-positive results, and the requirement for extensive optimisation or post-amplification analysis. This study introduces 3' Tth endonuclease cleavage PCR (3TEC-PCR), a two-oligonucleotide PCR system incorporating a modified primer/probe and a thermostable cleavage enzyme, Tth endonuclease IV, for real-time multiplex detection and SNP identification. Complete analytical specificity, low limits of detection, single-base specificity, and simultaneous multiple target detection have been demonstrated in this study using 3TEC-PCR to identify bacterial meningitis associated pathogens. This is the first report of a two-oligonucleotide, real-time multiplex PCR technology with single-base specificity using Tth endonuclease IV.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Alleles , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Haemophilus influenzae/genetics , Humans , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/microbiology , Neisseria meningitidis/genetics , Streptococcus pneumoniae/genetics
3.
BMJ Case Rep ; 14(1)2021 Jan 06.
Article in English | MEDLINE | ID: covidwho-1013027

ABSTRACT

We present a case of a 75-year-old woman with Austrian syndrome: pneumonia, meningitis and endocarditis all due to Streptococcus pneumoniae Transoesophageal echocardiogram demonstrated a large mitral valve vegetation with severe mitral regurgitation. She was treated with intravenous ceftriaxone and listed for surgical repair of her mitral valve. Preoperatively, she developed an idiosyncratic drug-induced agranulocytosis secondary to ceftriaxone, which resolved on cessation of the medication. However, while awaiting neutrophil recovery, she developed an acute deterioration, becoming critically unwell. This deterioration was multifactorial, with acute decompensated heart failure alongside COVID-19. After multidisciplinary discussion, she was considered too unwell for surgery and palliated.


Subject(s)
Agranulocytosis/chemically induced , COVID-19/epidemiology , Ceftriaxone/adverse effects , Endocarditis, Bacterial/epidemiology , Meningitis, Bacterial/epidemiology , Pneumococcal Infections/epidemiology , SARS-CoV-2 , Aged , Agranulocytosis/epidemiology , Anti-Bacterial Agents/adverse effects , Comorbidity , Echocardiography, Transesophageal , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/microbiology , Female , Humans , Meningitis, Bacterial/microbiology , Pandemics , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/isolation & purification , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL